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Abstract

This paper presents a study of application of Duffing oscillator for extracting the features of early
mechanical failure signal. By analysis of global solutions and bifurcation set of Duffing equation, we
conclude that the bifurcation threshold, which corresponds to the maximum orbit outside the homoclinic
orbit of Duffing equation, can be used to detect weak signal, such as the characteristic signal of early
machinery fault. Therefore, the Duffing oscillator is suitable to be a model for weak signal detection,
although some relative aspects for practical uses should be considered carefully. In this paper, the strategies
for testing whether the weak signal is exists and how to estimate its amplitude are discussed in detail.
Moreover, an example is presented here to demonstrate the utility of this method by analyzing the early
rub-impact signal appearing in a rotor. The results show that the method is effective for early detection of
fault described by specific periodic-motion components such as rub-impact fault of rotor in aeroengine.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Biologists find that the vibration of a human eardrum is non-symmetrical, and the potential of
eardrum vibration can be described by the following equation:

U ¼ 1
2
kx2 þ 1

3
lx3: ð1Þ

If the effective mass of eardrum be normalized as unity, then the motion equation of eardrum can
be simplified as

.x þ kx þ lx2 ¼ 0: ð2Þ
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The sound signal (including basis and higher-term harmonics) can be written as

F ¼
X
i¼1

Fi cosðoit þ yiÞ: ð3Þ

With the sound signal entering the auricle, we obtain the motion- equation of eardrum:

.x þ kx þ lx2 ¼
X
i¼1

Fi cosðoit þ yiÞ: ð4Þ

It is well-known that human ears have the ability to identify weak sound with high resolution. If
the model of a human eardrum described by Eq. (4) is appropriate, we can imagine that the ability
of human ears is associated with parameters k; l;Fi and so on. Thus, we may use Eq. (4), the non-
linear oscillator or Duffing oscillator, as a model, to detect weak signal by means of adjusting its
parameters. Now, we describe the basic idea as follows.
If the signal needed for detection is the perturbation of external periodic force of chaotic

oscillator (Duffing equation) [1–3], the noise component in the signal cannot induce the state
transition of the oscillator even if it is very strong. Furthermore, the weak fault-signal component,
with specific characteristics like periodic signal, can make the oscillator produce phase shift, under
these conditions, we can identify the fault signal with the specific feature by calculating the states
of the oscillator.
Some of the literature discusses how to use the Duffing equation to detect weak signal and

diagnose incipient fault, but the solutions of Duffing equation, which play an important role in
practical uses, have not been discussed in detail [1–4,8]. Therefore, in this paper, we will discuss
related problems about the solutions of Duffing equation and implementing model for detecting
the weak signal based on the characteristics of the solutions.

2. Global solutions and bifurcations of duffing equation

Consider the simplest Duffing equation [5–7]:

.x � x þ x3 ¼ 0: ð5Þ

By introducing the signals of the weak dissipation (aerodynamic damping) and periodic force, we
obtain

.x � x þ x3 ¼ eðg cos ot � d ’xÞ; ð6Þ

Eq. (6) can be written as a set of state equation:

’x ¼ y;

’y ¼ x � x3 þ eðg cos ot � dyÞ; ð7Þ

where the force amplitude g; frequency o; and the damping d are variable parameters and e is a
small scaling parameter. Solving Eq. (7) for e ¼ 0; we obtain a center at ðx; yÞ ¼ ð71; 0Þ and a
hyperbolic saddle at ð0; 0Þ: The level set of Eq. (7) can be written as

Hðx; yÞ ¼
y2

2
�

x2

2
þ

x4

4
¼ 0; ð8Þ

which includes two homoclinic orbits, G0
þ;G

0
� and a point p0 ¼ ð0; 0Þ as shown in Fig. 1.
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The unperturbed homoclinic orbits are given by

q0þðt � t0Þ ¼
ffiffiffi
2

p
sechðt � t0Þ;�

ffiffiffi
2

p
sech t � t0ð Þtanh t � t0ð Þ

h i
;

q0� ¼ �q0þ: ð9Þ

Within each of the loops G0
7; there is a family of periodic orbits with one-parameter k, which may

be written as

qk
þðt � t0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

2� k2

r
dn

t � t0ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� k2

p ; k

 !
;
�

ffiffiffi
2

p
k2

2� k2
sn

t � t0ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� k2

p ; k

 !
cn

t � t0ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� k2

p ; k

 !" #
;

qk
�ðt � t0Þ ¼ �qk

þðt � t0Þ; ð10Þ

where sn, cn and dn are the Jacobi elliptic functions and k is the elliptic modulus. As
k-1; qk

7-q07,f0; 0g; as k-0; qk
7-ð71; 0Þ: Selecting initial conditions at t ¼ t0; we have

q07 0ð Þ ¼ 7
ffiffiffi
2

p
; 0

� �
; qk

7 0ð Þ ¼ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

2� k2

r
; 0

" #
: ð11Þ

The orbits lying outside G0
þ,fð0; 0Þg,G0

� are given by

#qk t � t0ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2

2k2 � 1

s
cn

t � t0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2 � 1

p ; k

 !
;�

ffiffiffi
2

p
k

2k2 � 1
sn

t � t0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2 � 1

p ; k

 !
dn

t � t0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2 � 1

p ; k

 !2
4

3
5; ð12Þ

where kA 1=
ffiffiffi
2

p
; 1

� �
; and #qk-q0þ, 0; 0ð Þf g,q0� as k-1 and #qk becomes unbounded as

k-1=
ffiffiffi
2

p
:

With reference to Melnikov function, we can obtain the following bifurcation threshold R0ðoÞ
for q0þ (or q0�):

R0ðoÞ ¼
g
d
¼
4 cosh po=2

� �
3
ffiffiffi
2

p
po

: ð13Þ

In Eq. (13), if g=d > R0ðoÞ; the stable manifold intersects unstable manifold for e is small enough
and if g=doR0ðoÞ; the intersection of stable manifold and unstable manifold is empty.
Consider the resonance orbits qk

þðt � t0Þ within G0
þ; the bifurcation threshold Rm oð Þ is

RmðoÞ ¼
g
d
¼

J1ðm; 1Þ
J2ðm; 1;oÞ

; ð14Þ
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where

J1 m; nð Þ ¼
2

3

2� k2ðm; nÞ
� �

2E kðm; nÞ½ 	 � 4k02ðm; nÞK kðm; nÞ½ 	

2� k2ðm; nÞ½ 	3=2

and

J2ðm; n;oÞ ¼
0; na1ffiffiffi
2

p
po sech

pmK 0 k m; 1ð Þ½ 	
K k m; 1ð Þ½ 	

� �
; n ¼ 1

8><
>:

Here EðkÞ is the complete elliptic integral of the second kind and k0 is the complementary elliptic
modulus k02 ¼ 1� k2:
From Eq. (14), if g=d > RmðoÞ there are a pair of m order sub-harmonics (period 2pm=o) which

appear on a bifurcation curve tangent to the curve g ¼ RmðoÞd at the point g ¼ d ¼ 0 [5].
By a similar procedure, we can obtain the orbits lying outside G0

þ, ð0; 0Þf g,G0
�;

#RmðoÞdef ¼
g
d
¼

#J1ðm; 1Þd
#J2ðm; 1;oÞ

ð15Þ

with

#J1ðm; nÞ ¼
2

3

2k2ðm; nÞ � 1
� �

4Eðkðm; nÞÞ þ 4k02ðm; nÞK kðm; nÞ½ 	

2k2ðm; nÞ � 1½ 	3=2

and

#J2ðm; n;oÞ ¼
0; na1; m even;

2
ffiffiffi
2

p
po sech

mpK 0ðm; 1Þ
2Kðkðm; 1ÞÞ

� �
; n ¼ 1; m odd:

8><
>:

Here kðm; nÞ is the unique solution of the following resonance equation:

#Tk ¼ 4KðkÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2 � 1

p
¼
2pm

on
: ð16Þ

In addition, according to the transform formula of dual active-angle variables and related theory,
we can analyze the higher order terms and the stability of the global solutions of Duffing
equation. Then we can find the attractor of sub-harmonics, that is

DIðmÞB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e

m3

4o3

� �s
expð � pm=oÞ: ð17Þ

We can see that the attractor will shrink rapidly in size as m is increased. This means that the
bands of resonance will become more and more narrow. Only the bands of the lower order sub-
harmonics have sufficient width [5,6].
By the above analysis, we have obtained three types of bifurcation thresholds,

R0ðoÞ;RmðoÞ; #RmðoÞ of Duffing equation.
As an example of o ¼ 1; Fig. 2 shows how the bifurcation thresholds of homoclinic, sub-

harmonic inside and outside homoclinic orbits vary with ed and eg:
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In Fig. 2, #R1 is quite different from the others. This phenomenon can be seen as useful
information for detection of weak signal. In the meantime, from Eq. (17), we see that attractors
shrink rapidly in size as m increases. That is, the width of resonance band approaches zero
(DI-0) when m approaches infinity (m-N). The resonance band of sub-harmonic is sufficiently
wide only in the case of m ¼ 1: Thus, we mainly focus on the property of shift phase of the outside
orbit as m ¼ 1; and use the property to detect weak signal.
Selecting the outer orbit in case of m=1 to be the detected orbit has many advantages [2]. From

Fig. 2, under the condition of diverse d; the bifurcation value of #R1 is obviously greater than those
of others, and the set of orbits converts into periodic sub-harmonic motion which is steadily in
sub-harmonic orbit of m=1 when g=d > #R1: The ultimate motion of this transition is obvious.
From Eq. (17), the width of resonance band of sub-harmonic, in case of m=1, is the greatest and
it can guarantee that the points in phase domain are steadily within resonance band even if g and d
are very great. Theoretically, g is linear to d when d varies over a rather large range. Because the
parameters, g and d; can be endowed with quite big values, it is easy to guarantee that the form of
ultimate motion of the orbits is always in the orbit of the global chaotic state when g=d is quite less
than #R1; no matter where the initial point of attractor is. In the meantime, when g=d is greater
than Rm ðm ¼ 1; 2;yÞ and #Rm ðm ¼ 3; 5;yÞ; the trajectory in phase domain will be steady in
these orbits. But because the resonance bands of these sub-harmonic orbits are so narrow that any
g and d cannot make the set of solutions be steady in any orbit even if they are endowed with quite
big values, this form of the ultimate motion reveals chaotic motion.

3. Detecting model and refinement of bifurcation value

3.1. Detecting model

According to the theoretical analysis mentioned in Section 2, the orbit, in case of m ¼ 1; is the
largest orbit which departs farthest away from homoclinic orbits among the set of solutions
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outside homoclinic orbits of Duffing equation. Consider the case of o ¼ 1; we rewrite the Duffing
equation as

.x þ d ’x � x þ x3 ¼ g cos t: ð18Þ

By computation of the theoretical bifurcation value of Eq. (18), we know that the chaotic motion
is transforming into periodic motion when #R1 ¼ gc=d ¼ 1:676889: That is, if the amplitude of
external exciting periodic force is g ¼ gc ¼ d #R1 or little less than this value, Eq. (18) will experience
chaotic and periodic motion alternately as time goes on.
The detecting model is constructed as follows:

.x þ d ’x � x þ x3 ¼ gc cos t þ sðtÞ; ð19Þ

where the first term of right side of Eq. (19) is the referenced signal and the second term is the
signal to be detected. If the frequency of sðtÞ is the same as that of the referenced signal, the system
described by Eq. (19) will cause a phase shift in spite of the weak amplitude. This means the
system will convert the chaotic motion into a large periodic motion. When the frequency of weak
signal sðtÞ is different from that of referenced signal, the system will not induce phase shift. This
property of bifurcation can be used as a means for detecting weak signal [8].

3.2. Discretization influence for bifurcation value

Considering the bifurcation of the set of solutions of Eq. (19), we know theoretically that the
condition of converting chaos into periodic motion is gc=d ¼ #R1 ¼ 1:676889; where gc is the
critical value of g as d is fixed. In fact, the signals we have dealt with in laboratory are often in the
form of time series. However, the bifurcation value discussed so far is in the continuous form since
it is derived from calculation. We do not apply the bifurcation threshold to signal detection. In
practice, the bifurcation threshold determined by numerical computation is slightly less than the
theoretical value.
Discretizing Eq. (18) and solving it by using Runge–Kutta method, we can obtain a discrete

equation. The similarity between discrete equation and original equation is governed by the
integral iteration step h. Different h results in #R1 with slight difference. In the following, we shall
determine the changing trend of #R1 by numerical analysis. First, we fix h and d: Then, determine
the critical value gc of phase shift by numerical computation. Some of the results are shown in
Tables 1 and 2. (The initial time is 0.0 s, initial point is ðx; ’xÞ ¼ ð1:0; 1:0Þ0; the length of time series
is 20 000.)
Further numerical analysis shows that the ultimate form of motion determined by Eq. (19) is

always in sub-harmonic orbit in case of m ¼ 1 when g=d > #R1; no matter how big g is, the
trajectory is of slight distortion.
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Table 1

Small change of #R1 when h ¼ 0:01

d 0.3 0.4 0.5 0.6 0.7 0.8

gc 0.5177 0.6725 0.8276 0.9816 1.1372 1.28
#R1 1.7257 1.6812 1.6551 1.636 1.6245 1.60
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3.3. The evolution of bifurcation from chaos to periodic motion

For convenience and without loss of generalization, we select parameters of h=0.005 and
d ¼ 0:5 for analysis of the solutions (orbits). In the cases of R=1.60, 1.654, 1.655, 1.656, we
obtain the time histories and phase portraits corresponding to different R as shown in Fig. 3(a),
(b), (c) and (d), respectively.
Fig. 3(a) is in the chaotic state. Fig. 3(b) and (c) are chaotic and periodic motions appearing

alternately, that is, one can observe the intermittent chaotic phenomena. The width of chaotic
contour becomes more and more narrow with increase in the value R. In Fig. 3(d), the orbit
becomes completely a large orbit of periodic motion. Thus, in the case of h=0.005, d ¼ 0:5; and
o ¼ 1; gc ¼ 0:5� 1:655 ¼ 0:8275 is the bifurcation point of chaotic and periodic motions.
From the above figures, we can observe that when R changes from 1.60 to 1.655, the output of

resonator is mixed with the chaotic and periodic motions, and the chaotic state is gradually
replaced by the periodic motion as the value of R increases. The orbit becomes a large periodic
motion at the point R ¼ 1:656: Therefore, #R1 ¼ 1:655 is sensitive to weak signal. At the meantime,
the amplitude of referenced signal is gc ¼ 0:5� 1:655 ¼ 0:8275: If the amplitude of the weak signal
is not less than A=0.5� 0.001=0.0005, and R is not less than 1.656, the resonator is a large
periodic motion as shown in Fig. 3(d),
If quite a strong noise, such as a white noise without loss of generalization, is added to the weak

signal, the results of Fig. 3(d) will not be so ‘‘ideal’’. There is a very short ‘‘chaotic contour’’ mixed
with a large periodic response. It is not easy to judge phase shift by Fig. 3. Therefore, it is
necessary to search for a reliable and fast method to determine phase shift quantitatively, so as to
exert the potential function of chaotic resonator in detecting the weak signal. We discuss this in
detail in another paper.

4. Further discussion of related problems

If g is 0.8275 or slightly less than that in Eq. (19), chaotic and periodic motions will occur
alternately in the ultimate state of the orbits. At the same time, the orbits are perturbed by
external weak signal (for example, sðtÞ ¼ 0:0005 cos t), the frequency of which is the same as the
referenced signal. We rewrite Eq. (19) as

.x þ d ’x � x þ x3 ¼ 0:8275 cos t þ sðtÞ: ð20Þ

Now the ultimate state of motion is the same as that shown in Fig. 3(d), and the orbits have
transited from chaos to periodic motion. Through this process, weak signal such as 0.0005 cos t

can be detected. But for practical uses, we must first solve a series of problems.
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Table 2

Small change of #R1 when h ¼ 0:005

d 0.3 0.4 0.5 0.6 0.7 0.8

gc 0.5177 06724 0.8275 0.9786 1.2614 1.3696
#R1 1.7257 1.6811 1.655 1.631 1.802 1.712
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Fig. 3. Time histories and phase portraits of detected model outputs: (a) h=0.005, d ¼ 0:5; R ¼ 1:60; (b) h ¼ 0:005;
d ¼ 0:5; R ¼ 1:654; (c) h ¼ 0:005; d ¼ 0:5; R ¼ 1:655; (d) h ¼ 0:005; d ¼ 0:5; R ¼ 1:656:
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4.1. Influence of noise

If external exciting signal is pure noise sðtÞ ¼ eðtÞ; that is, the right side of Eq. (20) becomes
0:8275 cos t þ eðtÞ; can we use the orbits determined by Eq. (20) to reveal the orbit shift?
Assuming the external noise is Gaussian, we consider the cases of eðtÞBNð0; 1Þ and
eðtÞBNð0; 3:52Þ; and the solutions of Eq. (20) are shown in Fig. 4(a) and (b). Obviously, we can
see that there is no orbit shift in Fig. 4. The orbits are in chaotic state which means that the orbits
can keep the state of motion steadily under the influence of the perturbation of noise.

4.2. Influence of to-be-detected signal added noise

If the external exciting signal is sðtÞ ¼ 0:0005 cos t þ seðtÞ; will the orbit shift occur or not? If so,
what is the upper limit of s? Furthermore, what is the threshold of the signal-and-noise ratio at
which the weak signal can be detected? Assuming the exciting signal consists of the noise and
weak signal with the identical frequency as that of the referenced signal, that is sðtÞ ¼
0:0005 cos t þ 0:5eðtÞ; we solve Eq. (20) again and the result reveals that the phase of the orbits
shift at the value of the mean square root s ¼ 0:5; and the weak signal 0:0005 cos t can be detected
reliably. By similar approaches, and letting s ¼ 1:0; 0:6; 0:4 for trial, we observe that when s > 0:5;
the weak signal is buried by noise thoroughly, and thus, it cannot be detected. Only if sp0:5; can
the weak signal be identified reliably. Therefore, we can estimate the threshold of the signal-and-
noise ratio of the weak signal should be greater than

SNR ¼ 20 log
0:0005=

ffiffiffi
2

p
0:5

¼ �63 ðdBÞ:

Otherwise, it is not detectable by the method mentioned above.

4.3. Influence of different frequency signal

If the frequency of external signal is different from that of referenced signal, for example,
sðtÞ ¼ 0:005 cos ot; where o ¼ 0:5; 2, 10, or 200, will the orbits shift from one state to another or
not? For trial, letting o ¼ 0:5; 2:0; 10.0, 200.0, we again solve Eq. (20), the results show that the
orbits keep chaotic state and there is no evidences that the state of motion is shifted. In these
cases, the frequencies o of the external signals are always the integral multiple of that of the
referenced signal since the frequency of referenced signal is selected as o ¼ 1: In theory, it is
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Fig. 4. The state of system after perturbation of noise: (a) the case of s ¼ 1:0; (b) the case of s ¼ 3:5:
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possible that the state of motion will be shifted by the influence of these signals, but the premise of
this phenomenon is that the amplitudes of these signals must be big enough. That is, if the
amplitudes of external signals are sufficiently small, then the state of motion will not shift when
the frequency of the external signal is integral times of that of the referenced signal.

4.4. Detecting result of signal with frequency-shift

If the frequency of the external signal is slightly different from that of the referenced signal, for
example, sðtÞ ¼ 0:0005 cos½ð17DoÞt	; can the orbits be shifted or not? If so, what is the limit of
Do? Assume that the signal to be detected is sðtÞ ¼ 0:0005 cos½ð17DoÞt	; letting Do ¼ 0:01; 0.03,
0.05, 0.06, and 0.07, respectively, then the solutions of Eq. (20) show that orbits are shifting at the
domain of jDojp0:05:

4.5. Influence of initial phase

If there is a difference of initial phase between the external signal and the referenced signal, for
example, sðtÞ ¼ 0:005 cos½t þ j0	; will the orbit transition occur?
Letting the referenced signal be gc cos t; and the weak signal be V cosðt þ j0Þ; then we can write

the total periodic exciting force as

AðtÞ ¼ gc cos t þ V cosðt þ j0Þ

¼ ðgc þ Vcos j0Þ cos t � V sin j0 sin t

¼ gðtÞ cosðt þ fðtÞÞ; ð21Þ

where gðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2c þ 2gcV cos j0 þ V2

p
; fðtÞ ¼ arctgðV sin j0=ðgc þ V cos j0ÞÞ:

It can be seen from Eq. (19) that the orbit shift is related to the difference of phase between the
external signal and the referenced signal. When p� arccosðV=2gcÞpj0ppþ arccosðV=2gcÞ; and
gðtÞpgc; the orbit transition will not occur. This conclusion can be validated as follows:
Considering Eq. (20) again, if h ¼ 0:005 and sðtÞ ¼ 0:005 cosðt þ j0Þ; we know that, by

theoretical computation, the orbit shift will not occur when j0A½1:5738; 4:7094	: In practice,
however, the range (about [1.9,4.6]) of the difference phase between the external and the
referenced signals in which the orbit shift occurs is much more narrow than the theoretical result
because of the effect of discretization. If the amplitude V of the weak signal is big enough, the
range of the phase difference in which no orbit transition occurs becomes wider. In this case, we
must consider the affect of the magnitude of the difference of phase. Some measures must be
taken to make the phase of the external signal match that of the referenced signal.

4.6. Detecting method for signal with any frequency

So far we have mainly dealt with the signal with very low frequency ðo ¼ 1Þ: If the frequency o
of weak signal is greater than one, how can we detect it?
In case of the weak signal with any frequency, the co-ordinates of Eq. (18) need to be

transformed [2].
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Considering Eq. (18), letting t ¼ o0t; we obtain

xðtÞ ¼ xðo0tÞ ¼ %xðtÞ;
dxðtÞ
dt

¼
1

o0

dxðo0tÞ
dt

¼
1

o0

d %xðtÞ
dt

;

d2xðtÞ
dt2

¼
1

o2
0

d2xðo0tÞ
dt2

¼
1

o2
0

d2 %xðtÞ
dt2

: ð22Þ

Substituting Eq. (22) into (18), and omitting the upper score of variable %x; we get

1

o2
0

dx2

dt2
þ

d
o0

dx

dt
� x þ x3 ¼ gc cosðo0tÞ: ð23Þ

Adding the signal a cosððo0 þ DoÞtþ jÞ in the right side, we have

1

o2
0

dx2

dt2
þ

d
o0

dx

dt
� x þ x3

¼ gc cosðo0tÞ þ a cosððo0 þ DoÞtþ jÞ ¼ AðtÞ: ð24Þ

Let x ¼ x; y ¼ ð1=o0Þðdx=dtÞ; Eq. (24) can be written as a set of state equations:

dx

dt
¼ o0y;

dy

dt
¼ o0ð�dy þ x � x3 þ AðtÞÞ: ð25Þ

Comparing Eq. (25) with Eq. (19), we see that ’x and ’y are multiplied by o0: Since Eq. (25) is
obtained from Eq. (19) by linear transition, some of the properties of the state of motion, such as
bifurcation value g=d ¼ R0ðoÞ;RmðoÞ; #RmðoÞ; do not change.
The results obtained by numerical computation for Eq. (25) demonstrate that #R1ðo0Þ increases

slightly as o0 increases. The range of o0 in which the orbit of large-scale period does not distort is
related to sampling step h when g=d > #R1ðo0Þ: The smaller the step h is, the wider the detected
range of o0 becomes.

4.7. Determining amplitude for weak signal with any frequency

Having detected the existence of the weak signal, we shall focus mainly on how to determine the
amplitude of the signal.
Under the circumstance of the periodic motion of the resonator, namely g > gc ¼ #R1ðoÞd; the

greater the amplitude g of exciting signal is, the greater the amplitude A of response becomes. It is
easy to understand, if oh ¼ Const; then the amplitude A will vary with g consistently. A series of
results are shown in Fig. 5. When o increases gradually from one unit, the amplitude A varies with
g gradually. According to results shown in Fig. 5, we see that the amplitude A is proportional to g
which changes from 0.84 to 0.94. Thus, we can fit a curve AðgÞ as follows:

AðgÞ ¼ 0:927995gþ 0:932917: ð26Þ

The procedure of determining the amplitude is described as follows:
According to the numerical solution of Eq. (25), we can obtain the amplitude A of a periodic

response. Reading the corresponding g in Fig. 5, or solving g from Eq. (26), and subtracting gc

from g; then we obtain the amplitude of signal which is equal to g� gc:
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So far, we have given detailed analysis of estimating amplitude and frequency of the weak signal
via chaotic oscillator. In the following, we shall give an example of detecting the inceptive rub-
impact signal of a rotor system.

5. An example of application

Refs. [9,10] had carried out a detailed experimental research on vibration characteristics of the
sharp rub-impact of a rotor. The results show that, under some rotating speed, the responses of
the weak signal, caused by the rotor rubbing against the stator at early stage, are sub-harmonic
vibrations with a series of order which are the multiples of 1/n (generally n=3). These results are
of great significance to early diagnostics of the rub-impact of a rotor system. By means of the
chaotic resonator method, under the circumstance of noise,we can detect the weak periodic signals
with specific frequency which represent the symptom of early fault.
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Fig. 5. Amplitude A varying with g:

Fig. 6. Vibration displacement data s1(n) of early rotor rub-impact: (a) waveform and (b) power spectrum.
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To demonstrate the effectiveness of the method of chaotic resonator in identifying the feature of
early rub-impact fault, we collected 3000 points of radial vibration signals (denoted by s1(n)) from
a rotor rub-impact rig with a sampling frequency 1000Hz as shown in Fig. 6(a). We can see the
spectrum lines of 1/3X (20Hz), 2/3X (40Hz), 4/3X(80Hz) standing out in the Fig. 6(b), where X

denotes frequency of rotating speed which is equal to 60Hz. However, by using the classical
method, such a weak signal mixed with noise cannot be distinguished with naked eyes in spectrum
graph.
In any case, the frequency of rotating speed is a multiple of 1/3X and the amplitude of the signal

is very big. Supposing s1(n) to be the perturbation signal of the rotor system, whether the signal
(1/3X) is mixed in s1(n) or not, the chaotic oscillator may produce state transition and therefore
we shall obtain a false result about the existence of 1/3X representing early rub-impact. For the
purpose of detecting the inceptive rub-impact of the rotor, we need to detect 1/3X, 2/3X, 4/3X [10].
In this example, we have to detect the components of frequency of 20, 40 and 80Hz. For this
purpose, it is necessary to let s1(n) go through a digital low-pass filter (cut-off frequency of pass
band is at 40Hz, cut-off frequency of stop band is at 50Hz, ripple of pass band is 0.5 dB,
attenuation of stop band is �45 dB). Consequently, we get a time series denoted by s2(n) to detect
1/3X and 2/3X. As for detecting 4/3X, letting s1(n) go through a high-pass filter (cut-off frequency
of pass band is 75Hz, cut-off frequency of stop band is 65Hz, ripple of pass band is 0.5 dB,
attenuation of stop band is �45 dB), we get another time series denoted by s3(n). Therefore, we
obtain a set of equations as follows:

.x þ 0:5 ’x � x þ x3 ¼ 0:5� #R1ðo1Þ � cos o1t þ 0:1� s2ðnÞ;

.x þ 0:5 ’x � x þ x3 ¼ 0:5� #R1ðo2Þ � cos o2t þ 0:1� s2ðnÞ;

.x þ 0:5 ’x � x þ x3 ¼ 0:5� #R1ðo3Þ � cos o3t þ 0:1� s3ðnÞ;

where o1 ¼ 2p� 20 rad; o2 ¼ 2p� 40 rad; o3 ¼ 2p� 80 rad: The corresponding bifurcation
thresholds are #R1ð125:664Þ ¼ 1:655; #R1ð251:327Þ ¼ 1:656; #R1ð502:655Þ ¼ 1:689; respectively. The
solutions of this set of equations are shown in Figs. 7, 8 and 9, respectively. The corresponding
maximum amplitudes of oscillators response are Aðo1Þ ¼ 1:719887; Aðo2Þ ¼ 1:730571; Aðo3Þ ¼
1:752548: According to Eq. (26), we can estimate the corresponding amplitudes of the exciting
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Fig. 7. Phase portraits without and with perturbation of s2(n) (detecting o ¼ 2p� 20 rad): (a) no perturbation of s2(n);

(b) added perturbation of s2(n).
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signals:

aðoÞ ¼ 0:2053; o ¼ 125:664;

aðoÞ ¼ 0:3155; o ¼ 251:327;

aðoÞ ¼ 0:3873; o ¼ 502:655:

6. Conclusion

This paper analyzes solutions and global bifurcations of Duffing equation and concludes that
the large-scale periodic orbit furthest away from homoclinic orbits has the widest resonance band
among solutions outside homoclinic orbits. The corresponding bifurcation threshold is obviously
different from that of other orbits. The property of the threshold can be used to detect weak signal
and suppress chaos. Furthermore, this paper gives an implementing model for detecting the weak
signal based on Duffing oscillator and discusses related problems.
A detecting example presented in this paper demonstrates that the Duffing oscillator method

for detecting the weak signal is very effective and reliable. One of the key points in machinery
diagnostics is how to catch the symptoms of machine failure as early as possible. With this end in
view, the chaotic oscillator model promises well for detecting the weak signal and for diagnosis of
mechanical fault at early stage. However, it is necessary to do further research to determine
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Fig. 8. Phase portraits without and with perturbation of s2(n) (detecting o ¼ 2p� 40 rad): (a) no perturbation of s2(n);

(b) added perturbation of s2(n).

Fig. 9. Phase portraits without and with perturbation of s3(n) (detecting o ¼ 2p� 80 rad): (a) no perturbation of s3(n);

(b) added perturbation of s3(n).
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whether there are another chaotic oscillators suitable for detecting the weak signal in addition to
Duffing oscillator.
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